![]() |
Florent De Martin, Shinichi Matsushima, and Hiroshi Kawase. Impact of geometric effects on near‐surface green’s functions. Bull. Seism. Soc. Am., 103(6):3289–3304, 2013.
Florent De Martin. Verification of a spectral-element method code for the Southern California Earthquake Center LOH.3 viscoelastic case. Bull. Seism. Soc. Am., 101(6):2855–2865, 2011.
E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. Journal of Seismology, 1(3):237–251, 1997.
Dimitri Komatitsch and Jeroen Tromp. Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int., 139(3):806–822, 1999.
D. Komatitsch and J. Tromp. Spectral-element simulations of global seismic wave propagation-I. Validation. Geophys. J. Int., 149(2):390–412, 2002.
D. Komatitsch and J. P. Vilotte. The spectral-element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seism. Soc. Am., 88(2):368–392, 1998.
D. Komatitsch. Méthodes spectrales et éléments spectraux pour l'équation de l'élastodynamique 2D et 3D en milieu hétérogène (Spectral and spectral-element methods for the 2D and 3D elastodynamics equations in heterogeneous media). PhD thesis, Institut de Physique du Globe, Paris, France, 1997.
Y. Maday and A. T. Patera. Spectral element methods for the incompressible navier-stokes equations. State of the art survey in computational mechanics, pages 71–143, 1989.
Shinichi Matsushima, Takanori Hirokawa, Florent De Martin, Hiroshi Kawase, and Francisco J. Sánchez‐Sesma. The effect of lateral heterogeneity on horizontal‐to‐vertical spectral ratio of microtremors inferred from observation and synthetics. Bull. Seism. Soc. Am., 104(1):381–393, 2014.